Programming 8x8 LED Matrix
GIỚI THIỆU DỰ ÁN NÀY
Đây là một dự án rất dễ dàng cho những người mới bắt đầu như tôi, ý tưởng của nó là chỉ cho bạn cách gửi các byte đến một ma trận LED 8x8.
Tôi đã lập trình điều này với tất cả các chữ cái trong bảng chữ cái, nếu bạn muốn thêm thứ gì đó, hãy truy cập TẠI ĐÂY: http://robojax.com/learn/arduino/8x8LED/
Trong liên kết đó, bạn sẽ có thể tạo ra nhiều hình dạng hơn.
Ở phần bên trái của trang sẽ có một ma trận 8x8, khi tất cả các Đèn Led bị tắt, bằng cách nhấp vào chúng, chúng sẽ bật và ở cuối trang sẽ có mã đại diện cho những gì bạn đang làm với ma trận, khi hoàn tất, hãy thay đổi "sprite name" và dán mã bạn vừa tạo vào mã mà tôi đã thực hiện.
Để làm cho dự án này hoạt động, bạn sẽ cần thư viện:
FrequencyTimer2
Bạn có thể tải xuống từ:
https://github.com/rookie/FrequencyTimer2
//update from SAnwandter #define ROW_1 2 #define ROW_2 3 #define ROW_3 4 #define ROW_4 5 #define ROW_5 6 #define ROW_6 7 #define ROW_7 8 #define ROW_8 9 #define COL_1 10 #define COL_2 11 #define COL_3 12 #define COL_4 13 #define COL_5 A0 #define COL_6 A1 #define COL_7 A2 #define COL_8 A3 const byte rows[] = { ROW_1, ROW_2, ROW_3, ROW_4, ROW_5, ROW_6, ROW_7, ROW_8 }; const byte col[] = { COL_1,COL_2, COL_3, COL_4, COL_5, COL_6, COL_7, COL_8 }; // The display buffer // It's prefilled with a smiling face (1 = ON, 0 = OFF) byte ALL[] = {B11111111,B11111111,B11111111,B11111111,B11111111,B11111111,B11111111,B11111111}; byte EX[] = {B00000000,B00010000,B00010000,B00010000,B00010000,B00000000,B00010000,B00000000}; byte A[] = { B00000000,B00111100,B01100110,B01100110,B01111110,B01100110,B01100110,B01100110}; byte B[] = {B01111000,B01001000,B01001000,B01110000,B01001000,B01000100,B01000100,B01111100}; byte C[] = {B00000000,B00011110,B00100000,B01000000,B01000000,B01000000,B00100000,B00011110}; byte D[] = {B00000000,B00111000,B00100100,B00100010,B00100010,B00100100,B00111000,B00000000}; byte E[] = {B00000000,B00111100,B00100000,B00111000,B00100000,B00100000,B00111100,B00000000}; byte F[] = {B00000000,B00111100,B00100000,B00111000,B00100000,B00100000,B00100000,B00000000}; byte G[] = {B00000000,B00111110,B00100000,B00100000,B00101110,B00100010,B00111110,B00000000}; byte H[] = {B00000000,B00100100,B00100100,B00111100,B00100100,B00100100,B00100100,B00000000}; byte I[] = {B00000000,B00111000,B00010000,B00010000,B00010000,B00010000,B00111000,B00000000}; byte J[] = {B00000000,B00011100,B00001000,B00001000,B00001000,B00101000,B00111000,B00000000}; byte K[] = {B00000000,B00100100,B00101000,B00110000,B00101000,B00100100,B00100100,B00000000}; byte L[] = {B00000000,B00100000,B00100000,B00100000,B00100000,B00100000,B00111100,B00000000}; byte M[] = {B00000000,B00000000,B01000100,B10101010,B10010010,B10000010,B10000010,B00000000}; byte N[] = {B00000000,B00100010,B00110010,B00101010,B00100110,B00100010,B00000000,B00000000}; byte O[] = {B00000000,B00111100,B01000010,B01000010,B01000010,B01000010,B00111100,B00000000}; byte P[] = {B00000000,B00111000,B00100100,B00100100,B00111000,B00100000,B00100000,B00000000}; byte Q[] = {B00000000,B00111100,B01000010,B01000010,B01000010,B01000110,B00111110,B00000001}; byte R[] = {B00000000,B00111000,B00100100,B00100100,B00111000,B00100100,B00100100,B00000000}; byte S[] = {B00000000,B00111100,B00100000,B00111100,B00000100,B00000100,B00111100,B00000000}; byte T[] = {B00000000,B01111100,B00010000,B00010000,B00010000,B00010000,B00010000,B00000000}; byte U[] = {B00000000,B01000010,B01000010,B01000010,B01000010,B00100100,B00011000,B00000000}; byte V[] = {B00000000,B00100010,B00100010,B00100010,B00010100,B00010100,B00001000,B00000000}; byte W[] = {B00000000,B10000010,B10010010,B01010100,B01010100,B00101000,B00000000,B00000000}; byte X[] = {B00000000,B01000010,B00100100,B00011000,B00011000,B00100100,B01000010,B00000000}; byte Y[] = {B00000000,B01000100,B00101000,B00010000,B00010000,B00010000,B00010000,B00000000}; byte Z[] = {B00000000,B00111100,B00000100,B00001000,B00010000,B00100000,B00111100,B00000000}; float timeCount = 0; void setup() { // Open serial port Serial.begin(9600); // Set all used pins to OUTPUT // This is very important! If the pins are set to input // the display will be very dim. for (byte i = 2; i <= 13; i++) pinMode(i, OUTPUT); pinMode(A0, OUTPUT); pinMode(A1, OUTPUT); pinMode(A2, OUTPUT); pinMode(A3, OUTPUT); } void loop() { // This could be rewritten to not use a delay, which would make it appear brighter delay(5); timeCount += 1; if(timeCount < 20) { drawScreen(A); } else if (timeCount < 40) { drawScreen(R); } else if (timeCount < 60) { drawScreen(D); } else if (timeCount < 80) { drawScreen(U); } else if (timeCount < 100) { drawScreen(I); } else if (timeCount < 120) { drawScreen(N); } else if (timeCount < 140) { drawScreen(O); } else if (timeCount < 160) { drawScreen(ALL); } else if (timeCount < 180) { drawScreen(ALL); } else { // back to the start timeCount = 0; } } void drawScreen(byte buffer2[]) { // Turn on each row in series for (byte i = 0; i < 8; i++) // count next row { digitalWrite(rows[i], HIGH); //initiate whole row for (byte a = 0; a < 8; a++) // count next row { // if You set (~buffer2[i] >> a) then You will have positive digitalWrite(col[a], (buffer2[i] >> a) & 0x01); // initiate whole column delayMicroseconds(100); // uncoment deley for diferent speed of display //delayMicroseconds(1000); //delay(10); //delay(100); digitalWrite(col[a], 1); // reset whole column } digitalWrite(rows[i], LOW); // reset whole row // otherwise last row will intersect with next row } } // /* this is siplest resemplation how for loop is working with each row. digitalWrite(COL_1, (~b >> 0) & 0x01); // Get the 1st bit: 10000000 digitalWrite(COL_2, (~b >> 1) & 0x01); // Get the 2nd bit: 01000000 digitalWrite(COL_3, (~b >> 2) & 0x01); // Get the 3rd bit: 00100000 digitalWrite(COL_4, (~b >> 3) & 0x01); // Get the 4th bit: 00010000 digitalWrite(COL_5, (~b >> 4) & 0x01); // Get the 5th bit: 00001000 digitalWrite(COL_6, (~b >> 5) & 0x01); // Get the 6th bit: 00000100 digitalWrite(COL_7, (~b >> 6) & 0x01); // Get the 7th bit: 00000010 digitalWrite(COL_8, (~b >> 7) & 0x01); // Get the 8th bit: 00000001 }*/