Trả lời câu hỏi Toán 11 Hình học Bài 2 trang 55: Quan sát các cạnh tường trong lớp học và xem cạnh tường là hình ảnh của đường thẳng. Hãy chỉ ra một số cặp đường thẳng không thể cùng thuộc một mặt phẳng.
Lời giải
VD : 2 mặt tường vuông góc .
Trả lời câu hỏi Toán 11 Hình học Bài 2 trang 56: Cho tứ diện ABCD, chứng minh hai đường thẳng AB và CD chéo nhau. Chỉ ra cặp đường thẳng chéo nhau khác của tứ diện này (h.2.29).
Lời giải
Không tìm được mặt phẳng nào chứa AB và CD ⇒ AB và CD chéo nhau
Các cặp đường thẳng chéo nhau khác của tứ diện này: AC và BD, BC và AD
Trả lời câu hỏi Toán 11 Hình học Bài 2 trang 57: Cho hai mặt phẳng α và β. Một mặt phẳng λ cắt α và β lần lượt theo các giao tuyến a và b. Chứng minh rằng khi a và b c ắt nhau tại I thì I là điểm chung của α và β. (h.2.32).
Lời giải
a và b cắt nhau tại I
I ∈ a ∈ α (vì a là giao tuyến của α và λ)
I ∈ b ∈ β ( vì b là giao tuyến của β và λ)
Nên I là điểm chung của α và β
Bài 1 (trang 59 SGK Hình học 11): Cho tứ diện ABCD. Gọi P, Q, R và S là bốn điểm lần lượt lấy trên bốn cạnh AB, BC, CD và DA. Chứng minh rằng nếu bốn điểm P, Q, R và S đồng phẳng thì:
a) Ba đường thẳng PQ, SR và AC hoặc song song hoặc đồng quy.
b) Ba đường thẳng PS, RQ và BD hoặc song song hoặc đồng quy.
Lời giải:
a) Ta có:
PQ = (ABC) ∩ (PQRS)
RS = (PQRS) ∩ (ACD)
AC = (ABC) ∩ (ACD)
Vậy hoặc PQ, RS, AC đồng qui hoặc song song.
b) PS =(ABD) ∩ (PQRS)
RQ = (BCD) ∩ (PQRS)
BD = (ABD) ∩ (CBD)
Vậy PS, RQ, BD đồng quy hoặc song song.
Bài 2 (trang 59 SGK Hình học 11): Cho tứ diện ABCD và ba điểm P, Q, R lần lượt lấy trên ba cạnh AB, CD, BC. Tìm giao điểm S của AD và mặt phẳng (PQR) trong hai trường hợp sau đây.
a) PR song song với AC;
b) PR cắt AC.
Lời giải:
a) PR // AC
mp(PQR) và mp(ACD) lần lượt chứa hai đường thẳng song song PR // AC
⇒ (PQR) ∩ (ACD) = Qt là đường thẳng song song với AC và PR.
Gọi Qt ∩ AD = S
⇒ S = AD ∩ (PQR).
b) PR ∩ AC = I.
Có : Q ∈ (ACD) ∩ (PQR)
+ (ABC) ∩ (PQR) = PR.
+ (ACD) ∩ (ABC) = AC
+ (ACD) cắt (PQR)
⇒ PR; AC và giao tuyến của (ACD) và (PQR) đồng quy
Mà PR ∩ AC = I
⇒ I ∈ (ACD) ∩ (PQR).
⇒ (ACD) ∩ (PQR) = QI.
trong (ACD): QI ∩ AD = S chính là giao tuyến của (PQR) và AD.
Bài 3 (trang 60 SGK Hình học 11): Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AB, CD và G là trung điểm của đoạn MN.
a) Tìm giao điểm A’ của đường thẳng AG và mp(BCD).
b) Qua M kẻ đường thẳng Mx song song với AA’ và Mx cắt (BCD) tại M’.
c) Chứng minh GA = 3GA’
Lời giải:
a) Có: MN ⊂ (ABN)
⇒ G ∈ (ABN)
⇒ AG ⊂ (ABN).
Trong (ABN), gọi A’ = AG ∩ BN.
⇒ A’ ∈ BN ⊂ (BCD)
⇒ A’ = AG ∩ (BCD).
b) + Mx // AA’ ⊂ (ABN) ; M ∈ (ABN)
⇒ Mx ⊂ (ABN).
M’ = Mx ∩ (BCD)
⇒ M’ nằm trên giao tuyến của (ABN) và (BCD) chính là đường thẳng BN.
⇒ B; M’; A’ thẳng hàng.
⇒ BM’ = M’A’ = A’N.
c) Áp dụng chứng minh câu b ta có:
ΔMM’N có: MM’ = 2.GA’
ΔBAA’ có: AA’ = 2.MM’
⇒ AA’ = 4.GA’
⇒ GA = 3.GA’.