• Toán 11 Chương 5 Bài 1. Định nghĩa và ý nghĩa của đạo hàm

QC

Toán 11 Chương 5 Bài 1. Định nghĩa và ý nghĩa của đạo hàm

 Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 146: Một đoàn tàu chuyển động khởi hành từ một nhà ga. Quãng đường s (mét) đi được của đoàn tàu là một hàm số của thời gian t (phút). Ở những phút đầu tiên, hàm số đó là s = t2.

Hãy tính vận tốc trung bình của chuyển động trong khoảng [t; to] với to = 3 và t = 2; t = 2,5; t = 2,9; t = 2,99.

Nêu nhận xét về những kết quả thu được khi t càng gần to = 3.

Lời giải:

Vận tốc của đoàn tàu là:



Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 149: Cho hàm số y = x2. Hãy tính y'(xo) bằng định nghĩa.

Lời giải:



Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 150:

a) Vẽ đồ thị của hàm số f(x)=x22 .

b) Tính f’(1).

c) Vẽ đường thẳng đi qua điểm M1;12 và có hệ số góc bằng f’(1). Nêu nhận xét về vị trí tương đối của đường thẳng này và đồ thị hàm số đã cho.

Lời giải:

a)



Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 152: Viết phương trình đường thẳng đi qua Mo(xo; yo) và có hệ số góc λ

Lời giải:

y = λ(x – xo) + yo hay y = λx + (–λxo + yo)

Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 152: Cho hàm số y = -x2 + 3x – 2. Tính y’(2) bằng định nghĩa.

Lời giải:

- Giả sử Δx là số gia của đối số tại xo = 2. Ta có:

Δy = y(2 + Δx) - y(2)

= -(2 + Δx)2 + 3(2 + Δx) - 2 - (-22 + 3.2 - 2)

= -(4 + 4Δx + (Δx)2 )+ 6 + 3Δx - 2 = - (Δx)2 - Δx


Trả lời câu hỏi Toán 11 Đại số Bài 1 trang 153: Bằng định nghĩa, hãy tính đạo hàm của các hàm số:

a) f(x) = x2 tại điểm x bất kì;

b) g(x)=1x tại điểm bất kì x ≠ 0

Lời giải:

a) Giả sử Δx là số gia của đối số tại xo bất kỳ. Ta có:



Bài 1 (trang 156 SGK Đại số 11): Tìm số gia của hàm số f(x) = x3, biết rằng:

a.x0 = 1; Δx = 1;

b.x0 = 1; Δx = -0,1;

Lời giải:

a. Δy = f(x0 + Δx) – f(x0) = f(1 + 1) – f(1) = f(2) – f(1) = 23 – 13 = 7

b. Δy = f(x0 + Δx) – f(x0) = f(1 – 0,1) – f(1) = f(0,9) – f(1) = (0,9)3 – 13 = -0,271.


Bài 3 (trang 156 SGK Đại số 11): Tính ( bằng định nghĩa) đạo hàm của mỗi hàm số tại các điểm đã chỉ ra:



Bài 5 (trang 156 SGK Đại số 11): Viết phương trình tiếp tuyến đường cong y=x3.

a. Tại điểm (-1; -1);

b. Tại điểm có hoành độ bằng 2;

c. Biết hệ số góc của tiếp tuyến bằng 3.

Lời giải:

Với mọi x0 ∈ R ta có:




a) Tiếp tuyến của y = x3 tại điểm (-1; -1) là:

y = f’(-1)(x + 1) + y(1)

    = 3.(-1)2(x + 1) – 1

    = 3.(x + 1) – 1

    = 3x + 2.

b) x0 = 2

⇒ y0 = f(2) = 23 = 8;

⇒ f’(x0) = f’(2) = 3.22 = 12.

Vậy phương trình tiếp tuyến của y = x3 tại điểm có hoành độ bằng 2 là :

y = 12(x – 2) + 8 = 12x – 16.

c) k = 3

⇔ f’(x0) = 3

⇔ 3x02 = 3

⇔ x02 = 1

⇔ x0 = ±1.

+ Với x0 = 1 ⇒ y0 = 13 = 1

⇒ Phương trình tiếp tuyến : y = 3.(x – 1) + 1 = 3x – 2.

+ Với x0 = -1 ⇒ y0 = (-1)3 = -1

⇒ Phương trình tiếp tuyến : y = 3.(x + 1) – 1 = 3x + 2.

Vậy có hai phương trình tiếp tuyến của đường cong y = x3 có hệ số góc bằng 3 là y = 3x – 2 và y = 3x + 2.


Bài 7 (trang 157 SGK Đại số 11): Một vật rơi tự do theo phương trình s = 12 gt2, trong đó g≈9,8m/s2 là gia tốc trọng trường.

a) Tìm vận tốc trung bình của chuyển động trong khoảng thời gian từ t (t = 5s) đến t + Δt, trong các trường hợp Δt = 0,1s; Δt = 0,05s; Δt = 0,001s.

b) Tìm vận tốc tức thời của chuyển động tại thời điểm t = 5s.

Lời giải:

a) Vận tốc trung bình trong khoảng thời gian từ t đến t + Δt là:






















Error No module Onnx opencv

 Error No module Onnx opencv Lệnh :  pip install onnx==1.9 Mã lỗi PS F:\opencv_e\2.video> & C:/Users/youtb/Anaconda3/envs/virtualenv/...